An Effective Ensemble-based Classification Algorithm for High-Dimensional Steganalysis
نویسندگان
چکیده
Recently, ensemble learning algorithms are proposed to address the challenges of high dimensional classification for steganalysis caused by the curse of dimensionality and obtain superior performance. In this paper, we extend the state-of-the-art steganalysis tool developed by Kodovsky and Fridrich: the Kodovsky’s ensemble classifier and propose a novel method, called CSRS for high-dimensional steganalysis. Different from the Kodovsky’s ensemble classifier which selects features in a completely random way, the proposed CS-RS modifies the generation method of feature subspaces. Firstly, our method employs the chi-square statistic (CS) to measure the weight of each feature in the original feature space and sorts features according to weights. Then the sorted original feature space is partitioned into two parts according to a given dividing point: high correlation part and low correlation part. Finally, the feature subset is formed by selecting features randomly in each part according to the given sampling rate. Experiments with the steganographic algorithms HUGO demonstrate that the proposed CS-RS using the FLD classifier offers training complexity comparable to the Kodovsky’s classifier and significantly increases the performance of the Kodovsky’s classifier in less than 1000-dimensional feature subspaces, gaining 1.2% on the optimal result. In addition, the proposed algorithm outperforms Bagging and AdaBoost and can offer accuracy comparable to L-SVM.
منابع مشابه
A Classifier Ensemble Algorithm Based on Improved RSM for High Dimensional Steganalysis
Today, ensemble learning algorithms are proposed to address the challenges of high dimensional classification for steganalysis caused by the curse of dimensionality and obtain superior performance. In this paper, we propose a classifier ensemble algorithm based on improved Random Subspace Method (RSM) for high-dimensional blind steganalysis. Firstly, sequential forward selection (SFS) algorithm...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAn Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملAn Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JSW
دوره 9 شماره
صفحات -
تاریخ انتشار 2014